MEASURE AND INTEGRATION – FINAL EXAM SOLUTIONS

- Instructor: Daniel Valesin
 - 1. (a) Let Ω be a set and \mathcal{E} be a collection of subsets of Ω . Assume that we have sets $A_0 \subset A \subset \Omega$ such that $A_0 \neq A$ and

for all
$$B \in \mathcal{E}$$
, either $A \subset B$ or $A \cap B = \emptyset$.

Prove that $A_0 \notin \sigma(\mathcal{E})$, where $\sigma(\mathcal{E})$ denotes the σ -algebra generated by \mathcal{E} .

Solution. Let $\mathcal{F} = \{B \subset \Omega : A \subset B \text{ or } A \cap B = \emptyset\}$. Let us show that \mathcal{F} is a σ -algebra:

- We have $\Omega \in \mathcal{F}$ since $A \subset \Omega$.
- If $B \in \mathcal{F}$, then either $A \subset B$, in which case $A \cap B^c = \emptyset$, of $A \cap B = \emptyset$, in which case $A \subset B^c$; either way, we have $B^c \in \mathcal{F}$.
- Finally, take $B_1, B_2, \ldots \in \mathcal{F}$ and let us show that $\cup B_n \in \mathcal{F}$. In case we have $A \cap B_n = \emptyset$ for every n, then $A \cap (\cup B_n) = \emptyset$, so $\cup B_n \in \mathcal{F}$. In case we have $A \subset B_N$ for some N, then we also have $A \subset \cup B_n$, so again $\cup B_n \in \mathcal{F}$.

Now, by assumption we have $\mathcal{E} \subset \mathcal{F}$, so $\sigma(\mathcal{E}) \subset \sigma(\mathcal{F}) = \mathcal{F}$, where the last inequality holds because \mathcal{F} is a σ -algebra. This means that every set $B \in \sigma(\mathcal{E})$ satisfies the property that defines \mathcal{F} , that is, either $A \cap B = \emptyset$ or $A \subset B$; in either case, we must have $B \neq A_0$.

(b) Let Ω be a set and μ^* be an outer measure on Ω . Suppose $A \subset \Omega$ is μ^* -measurable. Show that, for any $B \subset \Omega$ with $\mu^*(B) < \infty$, we have

$$\mu^{\star}(A\cup B) = \mu^{\star}(A) + \mu^{\star}(B) - \mu^{\star}(A\cap B).$$

Solution. Since A is μ^* -measurable, we have

$$\mu^{\star}(Z) = \mu^{\star}(Z \cap A) + \mu^{\star}(Z \cap A^c) \quad \forall Z \subset \Omega.$$

Applying this to Z = B and to $Z = A \cup B$ respectively yields:

$$\mu^{*}(A \cup B) = \mu^{*}(A) + \mu^{*}(A^{c} \cap B);$$

$$\mu^{*}(B) = \mu^{*}(A \cap B) + \mu^{*}(A^{c} \cap B) \implies \mu^{*}(A^{c} \cap B) = \mu^{*}(B) - \mu^{*}(A \cap B);$$

note that in the implication in the second line we used the fact that $\mu^*(A \cap B) \leq \mu^*(B) < \infty$. Putting these equalities together gives the desired result.

2. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set (that is, $E \in \mathcal{M}$). Prove that, if m(E) > 0, then for every $\varepsilon > 0$ there exists an interval [a, b] such that $m(E \cap [a, b]) > (1 - \varepsilon) \cdot (b - a)$.

Solution. Suppose to the contrary that there exists $\varepsilon > 0$ such that, for every interval [a, b], we have $m(E \cap [a, b]) \leq (1 - \varepsilon) \cdot (b - a)$. Fix $\delta > 0$ small enough that

$$(1 - \varepsilon) \cdot (m(E) + \delta) < m(E).$$

By the definition of Lebesgue outer measure, there exist a sequence of intervals $[a_n, b_n]$, $n \in \mathbb{N}$, such that $E \subset \cup [a_n, b_n]$ and

$$m(E) \le \sum_{n} (b_n - a_n) \le m(E) + \delta.$$

But then,

$$E \subset \cup [a_n, b_n] \implies E \subset \cup ([a_n, b_n] \cap E)$$

$$\implies m(E) \le \sum_n m([a_n, b_n] \cap E) \le (1 - \varepsilon) \sum_n (b_n - a_n) \le (1 - \varepsilon)(m(E) + \delta) < m(E).$$

Hence it cannot be the case that $m(E \cap [a, b]) \leq (1 - \varepsilon) \cdot (b - a)$ for every [a, b].

- 3. In both the following items, \mathbb{R} is endowed with the Borel σ -algebra.
 - (a) Let (Ω, \mathcal{A}) be a measurable space, and let $A_n \in \mathcal{A}, n \in \mathbb{N}$. Define $f : \Omega \to \mathbb{R}$ by

$$f(\omega) = \inf\{n : \omega \in A_m \text{ for all } m \ge n\}, \quad \omega \in \Omega$$

(we adopt the convention that $\inf \emptyset = \infty$). Prove that f is measurable. Solution. For every $x \in \overline{\mathbb{R}}$, we have

$$\{\omega: f(\omega) \le x\} = \bigcup_{n \in \mathbb{N}: n \le x} \{\omega: f(\omega) \le n\} = \bigcup_{\substack{n \in \mathbb{N}: \\ n \le x}} \bigcap_{\substack{m \in \mathbb{N}: \\ m \ge n}} A_m \in \mathcal{A}.$$

(b) Let $f : \mathbb{R} \to \mathbb{R}$ be right continuous. Prove that f is measurable.

Solution. For each $n \in \mathbb{N}$, define

$$f_n = \sum_{k \in \mathbb{Z}} f((k+1)2^{-n}) \cdot \mathbb{1}_{(k2^{-n},(k+1)2^{-n}]}$$

Since f_n is a sum of indicator functions of measurable sets, it is measurable. We will prove that $f_n \to f$ pointwise; from this it will follow that f is measurable. Fix $x \in \mathbb{R}$ and $\varepsilon > 0$. Since f is right continuous, there exists $\delta > 0$ such that, if $y \in [x, x + \delta]$, then $|f(y) - f(x)| < \varepsilon$. Now take $n \in \mathbb{N}$ with $2^{-n} < \delta$. Let y_n be the smallest number of the form $k2^{-n}$ with $k \in \mathbb{Z}$ that is larger than x. Then, $f_n(x) = f(y_n)$, so $|f_n(x) - f(x)| = |f(y_n) - f(x)| < \varepsilon$ since $y_n \in [x, x + \delta]$.

- 4. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space.
 - (a) Let $f: \Omega \to \overline{\mathbb{R}}$ be an integrable function satisfying $\int_E f \ d\mu \ge 0$ for all $E \in \mathcal{A}$. Prove that $f \ge 0$ almost everywhere.

Solution. Assume to the contrary that $\mu(\{\omega : f(\omega) < 0\}) > 0$. Then, since

$$\mu(\{\omega: f(\omega) < 0\}) = \lim_{n \to \infty} \mu(\{\omega: f(\omega) < -1/n\}),$$

there must exist n such that $\mu(\{\omega : f(\omega) < -1/n\}) > 0$. But then,

$$\int_{\{\omega: f(\omega) < -1/n\}} f \, d\mu \le -\frac{1}{n} \cdot \mu(\{\omega: f(\omega) < -1/n\}) < 0.$$

(b) Let $g: \Omega \to \overline{\mathbb{R}}$ be an integrable function. Prove that

$$\lim_{n\to\infty}n\cdot\mu(\{\omega:g(\omega)>n\})=0.$$

Solution. First note that

$$\infty \cdot \mu(\{\omega : |g(\omega)| = \infty\}) = \int_{\{\omega : |g(\omega)| = \infty\}} |g| \ d\mu \le \int_{\Omega} |g| \ d\mu < \infty$$

so we have $\mu(\{\omega : |g(\omega)| = \infty\}) = 0$. Next, let $g_n = g \cdot \mathbb{1}_{\{\omega:g(\omega)>n\}}$. We have the pointwise convergence $g_n \to \infty \cdot \mathbb{1}_{\{\omega:g(\omega)=\infty\}}$, and this convergence is dominated by g, which is integrable. Hence, using the Dominated Convergence Theorem,

$$n \cdot \mu(\{\omega : g(\omega) > n\}) = \int n \cdot \mathbb{1}_{\{\omega : g(\omega) > n\}} d\mu$$
$$\leq \int g_n d\mu \xrightarrow{n \to \infty} \infty \cdot \mu(\{\omega : g(\omega) = \infty\}) = 0.$$

5. In this exercise, we consider the set $\Omega = (0, \infty)$ with the Borel σ -algebra and Lebesgue measure (these are just the restrictions to $(0, \infty)$ of the Borel σ -algebra and Lebesgue measure of \mathbb{R}).

Let p > 1 and let q be the conjugate exponent of p, that is, p + q = pq. Assume $f \in L^p((0,\infty))$.

(a) Show that, for every x > 0, $f \cdot \mathbb{1}_{(0,x)} \in L^1((0,\infty))$.

Solution. We have $|f(t)| \le 1 + |f(t)|^p$ for all t > 0, so

$$\int_0^\infty |f \cdot \mathbb{1}_{(0,x)}| \, dt = \int_0^x |f(t)| \, dt \le \int_0^x (1 + |f(t)|^p) \, dt \le x + \int_0^\infty |f(t)|^p \, dt < \infty.$$

(b) Prove that, for any $\alpha \in (0, 1/q)$ and x > 0,

$$\left|\int_0^x f(t) dt\right| \le \frac{x^{\frac{1}{q}-\alpha}}{(1-\alpha q)^{\frac{1}{q}}} \left(\int_0^x t^{\alpha p} \cdot |f(t)|^p dt\right)^{\frac{1}{p}}.$$

Hint. Write $f(t) = t^{-\alpha} \cdot t^{\alpha} \cdot f(t)$ and use Hölder's inequality (make sure to verify that the assumptions for the inequality are satisfied!)

Solution. Given x > 0, define

$$g(t) = t^{-\alpha} \cdot \mathbb{1}_{(0,x)}(t), \qquad h(t) = t^{\alpha} \cdot f(t) \cdot \mathbb{1}_{(0,x)}(t),$$

so that $\int_0^x f(t) dt = \int_0^\infty g(t) \cdot h(t) dt$. Note that

$$\int_0^\infty |g(t)|^q dt = \int_0^x t^{-\alpha q} dt = \frac{x^{1-\alpha q}}{1-\alpha q} < \infty$$

since $\alpha q < 1$, so $g \in L^q((0,\infty))$. Also,

$$\int_0^\infty |h(t)|^p dt = \int_0^x t^{\alpha p} \cdot |f(t)|^p dt \le x^{\alpha p} \cdot \int_0^\infty |f(t)|^p dt < \infty,$$

so $h \in L^p((0,\infty))$. We can thus use Hölder's inequality to obtain:

$$\begin{split} \left| \int_{0}^{x} f(t) \, dt \right| &\leq \int_{0}^{x} |f(t)| \, dt = \int_{0}^{\infty} |g(t)| \cdot |h(t)| \, dt \\ &\leq \left(\int_{0}^{\infty} |g(t)|^{q} \, dt \right)^{\frac{1}{q}} \cdot \left(\int_{0}^{\infty} |h(t)|^{p} \, dt \right)^{\frac{1}{p}} \\ &= \frac{x^{\frac{1}{q} - \alpha}}{(1 - \alpha q)^{\frac{1}{q}}} \cdot \left(\int_{0}^{x} t^{\alpha p} \cdot |f(t)|^{p} \, dt \right)^{\frac{1}{p}}. \end{split}$$

(c) Define, for x > 0,

$$F(x) = \frac{1}{x} \int_0^x f(t) dt.$$

Prove that $F \in L^p((0,\infty))$. *Hint.* You will need part (b) and the Fubini-Tonelli theorem. Use the fact that $p - \frac{p}{q} = 1$.

Solution. By part (b),

$$|F(x)|^{p} = \left|\frac{1}{x} \cdot \int_{0}^{x} f(t) dt\right|^{p} \le \frac{x^{p(\frac{1}{q} - \alpha - 1)}}{(1 - \alpha q)^{\frac{p}{q}}} \cdot \int_{0}^{x} t^{\alpha p} \cdot |f(t)|^{p} dt$$
$$= \frac{x^{-\alpha p - 1}}{(1 - \alpha q)^{\frac{p}{q}}} \cdot \int_{0}^{x} t^{\alpha p} \cdot |f(t)|^{p} dt,$$

where the equality follows from $p - \frac{p}{q} = 1$. Now we have

$$\int_0^\infty |F(x)|^p \, dx \le \int_0^\infty \frac{x^{-\alpha p - 1}}{(1 - \alpha q)^{\frac{p}{q}}} \cdot \int_0^x t^{\alpha p} \cdot |f(t)|^p \, dt \, dx.$$

Note that the function

$$(x,t) \mapsto \frac{x^{-\alpha p-1}}{(1-\alpha q)^{\frac{p}{q}}} \cdot t^{\alpha p} \cdot |f(t)|^p \cdot \mathbb{1}_{\{t \le x\}}$$

is non-negative and measurable with respect with the product Borel σ -algebra on $(0,\infty)$ (since it is a product of measurable functions). Hence, by the Fubini-Tonelli theorem,

$$\begin{split} &\int_{0}^{\infty} \frac{x^{-\alpha p-1}}{(1-\alpha q)^{\frac{p}{q}}} \cdot \int_{0}^{x} t^{\alpha p} \cdot |f(t)|^{p} dt dx \\ &= \int_{0}^{\infty} \int_{t}^{\infty} \frac{x^{-\alpha p-1}}{(1-\alpha q)^{\frac{p}{q}}} \cdot t^{\alpha p} \cdot |f(t)|^{p} dx dt \\ &= \frac{1}{(1-\alpha q)^{\frac{p}{q}}} \int_{0}^{\infty} t^{\alpha p} \cdot |f(t)|^{p} \int_{t}^{\infty} x^{-\alpha p-1} dx dt \\ &= \frac{1}{(-\alpha q+1)^{p/q}} \cdot \frac{1}{\alpha p} \cdot \int_{0}^{\infty} t^{\alpha p} \cdot |f(t)|^{p} \cdot t^{-\alpha p} dt = \frac{1}{(-\alpha q+1)^{p/q}} \cdot \frac{1}{\alpha p} \cdot ||f||_{p}^{p}. \end{split}$$

We have thus shown that $\int_0^\infty |F(x)|^p dx < \infty$, so $F \in L^p((0,\infty))$.