MEASURE AND INTEGRATION - FINAL EXAM SOLUTIONS
 Instructor: Daniel Valesin

1. (a) Let Ω be a set and \mathcal{E} be a collection of subsets of Ω. Assume that we have sets $A_{0} \subset A \subset \Omega$ such that $A_{0} \neq A$ and

$$
\text { for all } B \in \mathcal{E} \text {, either } A \subset B \text { or } A \cap B=\varnothing \text {. }
$$

Prove that $A_{0} \notin \sigma(\mathcal{E})$, where $\sigma(\mathcal{E})$ denotes the σ-algebra generated by \mathcal{E}.
Solution. Let $\mathcal{F}=\{B \subset \Omega: A \subset B$ or $A \cap B=\varnothing\}$. Let us show that \mathcal{F} is a σ-algebra:

- We have $\Omega \in \mathcal{F}$ since $A \subset \Omega$.
- If $B \in \mathcal{F}$, then either $A \subset B$, in which case $A \cap B^{c}=\varnothing$, of $A \cap B=\varnothing$, in which case $A \subset B^{c}$; either way, we have $B^{c} \in \mathcal{F}$.
- Finally, take $B_{1}, B_{2}, \ldots \in \mathcal{F}$ and let us show that $\cup B_{n} \in \mathcal{F}$. In case we have $A \cap B_{n}=\varnothing$ for every n, then $A \cap\left(\cup B_{n}\right)=\varnothing$, so $\cup B_{n} \in \mathcal{F}$. In case we have $A \subset B_{N}$ for some N, then we also have $A \subset \cup B_{n}$, so again $\cup B_{n} \in \mathcal{F}$.
Now, by assumption we have $\mathcal{E} \subset \mathcal{F}$, so $\sigma(\mathcal{E}) \subset \sigma(\mathcal{F})=\mathcal{F}$, where the last inequality holds because \mathcal{F} is a σ-algebra. This means that every set $B \in \sigma(\mathcal{E})$ satisfies the property that defines \mathcal{F}, that is, either $A \cap B=\varnothing$ or $A \subset B$; in either case, we must have $B \neq A_{0}$.
(b) Let Ω be a set and μ^{\star} be an outer measure on Ω. Suppose $A \subset \Omega$ is μ^{\star}-measurable. Show that, for any $B \subset \Omega$ with $\mu^{\star}(B)<\infty$, we have

$$
\mu^{\star}(A \cup B)=\mu^{\star}(A)+\mu^{\star}(B)-\mu^{\star}(A \cap B) .
$$

Solution. Since A is μ^{\star}-measurable, we have

$$
\mu^{\star}(Z)=\mu^{\star}(Z \cap A)+\mu^{\star}\left(Z \cap A^{c}\right) \quad \forall Z \subset \Omega .
$$

Applying this to $Z=B$ and to $Z=A \cup B$ respectively yields:

$$
\begin{aligned}
& \mu^{\star}(A \cup B)=\mu^{\star}(A)+\mu^{\star}\left(A^{c} \cap B\right) ; \\
& \mu^{\star}(B)=\mu^{\star}(A \cap B)+\mu^{\star}\left(A^{c} \cap B\right) \quad \Longrightarrow \quad \mu^{\star}\left(A^{c} \cap B\right)=\mu^{\star}(B)-\mu^{\star}(A \cap B) ;
\end{aligned}
$$

note that in the implication in the second line we used the fact that $\mu^{\star}(A \cap B) \leq$ $\mu^{\star}(B)<\infty$. Putting these equalities together gives the desired result.
2. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set (that is, $E \in \mathcal{M})$. Prove that, if $m(E)>0$, then for every $\varepsilon>0$ there exists an interval $[a, b]$ such that $m(E \cap[a, b])>(1-\varepsilon) \cdot(b-a)$.
Solution. Suppose to the contrary that there exists $\varepsilon>0$ such that, for every interval $[a, b]$, we have $m(E \cap[a, b]) \leq(1-\varepsilon) \cdot(b-a)$. Fix $\delta>0$ small enough that

$$
(1-\varepsilon) \cdot(m(E)+\delta)<m(E) .
$$

By the definition of Lebesgue outer measure, there exist a sequence of intervals $\left[a_{n}, b_{n}\right]$, $n \in \mathbb{N}$, such that $E \subset \cup\left[a_{n}, b_{n}\right]$ and

$$
m(E) \leq \sum_{n}\left(b_{n}-a_{n}\right) \leq m(E)+\delta .
$$

But then,

$$
\begin{aligned}
& E \subset \cup\left[a_{n}, b_{n}\right] \Longrightarrow E \subset \cup\left(\left[a_{n}, b_{n}\right] \cap E\right) \\
& \Longrightarrow m(E) \leq \sum_{n} m\left(\left[a_{n}, b_{n}\right] \cap E\right) \leq(1-\varepsilon) \sum_{n}\left(b_{n}-a_{n}\right) \leq(1-\varepsilon)(m(E)+\delta)<m(E)
\end{aligned}
$$

Hence it cannot be the case that $m(E \cap[a, b]) \leq(1-\varepsilon) \cdot(b-a)$ for every $[a, b]$.
3. In both the following items, \mathbb{R} is endowed with the Borel σ-algebra.
(a) Let (Ω, \mathcal{A}) be a measurable space, and let $A_{n} \in \mathcal{A}, n \in \mathbb{N}$. Define $f: \Omega \rightarrow \overline{\mathbb{R}}$ by

$$
f(\omega)=\inf \left\{n: \omega \in A_{m} \text { for all } m \geq n\right\}, \quad \omega \in \Omega
$$

(we adopt the convention that $\inf \varnothing=\infty$). Prove that f is measurable.
Solution. For every $x \in \overline{\mathbb{R}}$, we have

$$
\{\omega: f(\omega) \leq x\}=\bigcup_{n \in \mathbb{N}: n \leq x}\{\omega: f(\omega) \leq n\}=\bigcup_{\substack{n \in \mathbb{N}: \\ n \leq x}} \bigcap_{\substack{m \in \mathbb{N}: \\ m \geq n}} A_{m} \in \mathcal{A}
$$

(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be right continuous. Prove that f is measurable.

Solution. For each $n \in \mathbb{N}$, define

$$
f_{n}=\sum_{k \in \mathbb{Z}} f\left((k+1) 2^{-n}\right) \cdot \mathbb{1}_{\left(k 2^{-n},(k+1) 2^{-n}\right]}
$$

Since f_{n} is a sum of indicator functions of measurable sets, it is measurable. We will prove that $f_{n} \rightarrow f$ pointwise; from this it will follow that f is measurable. Fix $x \in \mathbb{R}$ and $\varepsilon>0$. Since f is right continuous, there exists $\delta>0$ such that, if $y \in[x, x+\delta]$, then $|f(y)-f(x)|<\varepsilon$. Now take $n \in \mathbb{N}$ with $2^{-n}<\delta$. Let y_{n} be the smallest number of the form $k 2^{-n}$ with $k \in \mathbb{Z}$ that is larger than x. Then, $f_{n}(x)=f\left(y_{n}\right)$, so $\left|f_{n}(x)-f(x)\right|=\left|f\left(y_{n}\right)-f(x)\right|<\varepsilon$ since $y_{n} \in[x, x+\delta]$.
4. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space.
(a) Let $f: \Omega \rightarrow \overline{\mathbb{R}}$ be an integrable function satisfying $\int_{E} f d \mu \geq 0$ for all $E \in \mathcal{A}$. Prove that $f \geq 0$ almost everywhere.
Solution. Assume to the contrary that $\mu(\{\omega: f(\omega)<0\})>0$. Then, since

$$
\mu(\{\omega: f(\omega)<0\})=\lim _{n \rightarrow \infty} \mu(\{\omega: f(\omega)<-1 / n\})
$$

there must exist n such that $\mu(\{\omega: f(\omega)<-1 / n\})>0$. But then,

$$
\int_{\{\omega: f(\omega)<-1 / n\}} f d \mu \leq-\frac{1}{n} \cdot \mu(\{\omega: f(\omega)<-1 / n\})<0 .
$$

(b) Let $g: \Omega \rightarrow \overline{\mathbb{R}}$ be an integrable function. Prove that

$$
\lim _{n \rightarrow \infty} n \cdot \mu(\{\omega: g(\omega)>n\})=0
$$

Solution. First note that

$$
\infty \cdot \mu(\{\omega:|g(\omega)|=\infty\})=\int_{\{\omega:|g(\omega)|=\infty\}}|g| d \mu \leq \int_{\Omega}|g| d \mu<\infty,
$$

so we have $\mu(\{\omega:|g(\omega)|=\infty\})=0$. Next, let $g_{n}=g \cdot \mathbb{1}_{\{\omega: g(\omega)>n\}}$. We have the pointwise convergence $g_{n} \rightarrow \infty \cdot \mathbb{1}_{\{\omega: g(\omega)=\infty\}}$, and this convergence is dominated by g, which is integrable. Hence, using the Dominated Convergence Theorem,

$$
\begin{aligned}
n \cdot \mu(\{\omega: g(\omega)>n\}) & =\int n \cdot \mathbb{1}_{\{\omega: g(\omega)>n\}} d \mu \\
& \leq \int g_{n} d \mu \xrightarrow{n \rightarrow \infty} \infty \cdot \mu(\{\omega: g(\omega)=\infty\})=0 .
\end{aligned}
$$

5. In this exercise, we consider the set $\Omega=(0, \infty)$ with the Borel σ-algebra and Lebesgue measure (these are just the restrictions to $(0, \infty)$ of the Borel σ-algebra and Lebesgue measure of \mathbb{R}).
Let $p>1$ and let q be the conjugate exponent of p, that is, $p+q=p q$. Assume $f \in L^{p}((0, \infty))$.
(a) Show that, for every $x>0, f \cdot \mathbb{1}_{(0, x)} \in L^{1}((0, \infty))$.

Solution. We have $|f(t)| \leq 1+|f(t)|^{p}$ for all $t>0$, so

$$
\int_{0}^{\infty}\left|f \cdot \mathbb{1}_{(0, x)}\right| d t=\int_{0}^{x}|f(t)| d t \leq \int_{0}^{x}\left(1+|f(t)|^{p}\right) d t \leq x+\int_{0}^{\infty}|f(t)|^{p} d t<\infty .
$$

(b) Prove that, for any $\alpha \in(0,1 / q)$ and $x>0$,

$$
\left|\int_{0}^{x} f(t) d t\right| \leq \frac{x^{\frac{1}{q}-\alpha}}{(1-\alpha q)^{\frac{1}{q}}}\left(\int_{0}^{x} t^{\alpha p} \cdot|f(t)|^{p} d t\right)^{\frac{1}{p}} .
$$

Hint. Write $f(t)=t^{-\alpha} \cdot t^{\alpha} \cdot f(t)$ and use Hölder's inequality (make sure to verify that the assumptions for the inequality are satisfied!)
Solution. Given $x>0$, define

$$
g(t)=t^{-\alpha} \cdot \mathbb{1}_{(0, x)}(t), \quad h(t)=t^{\alpha} \cdot f(t) \cdot \mathbb{1}_{(0, x)}(t),
$$

so that $\int_{0}^{x} f(t) d t=\int_{0}^{\infty} g(t) \cdot h(t) d t$. Note that

$$
\int_{0}^{\infty}|g(t)|^{q} d t=\int_{0}^{x} t^{-\alpha q} d t=\frac{x^{1-\alpha q}}{1-\alpha q}<\infty
$$

since $\alpha q<1$, so $g \in L^{q}((0, \infty))$. Also,

$$
\int_{0}^{\infty}|h(t)|^{p} d t=\int_{0}^{x} t^{\alpha p} \cdot|f(t)|^{p} d t \leq x^{\alpha p} \cdot \int_{0}^{\infty}|f(t)|^{p} d t<\infty
$$

so $h \in L^{p}((0, \infty))$. We can thus use Hölder's inequality to obtain:

$$
\begin{aligned}
\left|\int_{0}^{x} f(t) d t\right| \leq \int_{0}^{x}|f(t)| d t & =\int_{0}^{\infty}|g(t)| \cdot|h(t)| d t \\
& \leq\left(\int_{0}^{\infty}|g(t)|^{q} d t\right)^{\frac{1}{q}} \cdot\left(\int_{0}^{\infty}|h(t)|^{p} d t\right)^{\frac{1}{p}} \\
& =\frac{x^{\frac{1}{q}-\alpha}}{(1-\alpha q)^{\frac{1}{q}}} \cdot\left(\int_{0}^{x} t^{\alpha p} \cdot|f(t)|^{p} d t\right)^{\frac{1}{p}} .
\end{aligned}
$$

(c) Define, for $x>0$,

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t .
$$

Prove that $F \in L^{p}((0, \infty))$. Hint. You will need part (b) and the Fubini-Tonelli theorem. Use the fact that $p-\frac{p}{q}=1$.
Solution. By part (b),

$$
\begin{aligned}
|F(x)|^{p}=\left|\frac{1}{x} \cdot \int_{0}^{x} f(t) d t\right|^{p} & \leq \frac{x^{p\left(\frac{1}{q}-\alpha-1\right)}}{(1-\alpha q)^{\frac{p}{q}}} \cdot \int_{0}^{x} t^{\alpha p} \cdot|f(t)|^{p} d t \\
& =\frac{x^{-\alpha p-1}}{(1-\alpha q)^{\frac{p}{q}}} \cdot \int_{0}^{x} t^{\alpha p} \cdot|f(t)|^{p} d t
\end{aligned}
$$

where the equality follows from $p-\frac{p}{q}=1$. Now we have

$$
\int_{0}^{\infty}|F(x)|^{p} d x \leq \int_{0}^{\infty} \frac{x^{-\alpha p-1}}{(1-\alpha q)^{\frac{p}{q}}} \cdot \int_{0}^{x} t^{\alpha p} \cdot|f(t)|^{p} d t d x .
$$

Note that the function

$$
(x, t) \mapsto \frac{x^{-\alpha p-1}}{(1-\alpha q)^{\frac{p}{q}}} \cdot t^{\alpha p} \cdot|f(t)|^{p} \cdot \mathbb{1}_{\{t \leq x\}}
$$

is non-negative and measurable with respect with the product Borel σ-algebra on $(0, \infty)$ (since it is a product of measurable functions). Hence, by the Fubini-Tonelli theorem,

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x^{-\alpha p-1}}{(1-\alpha q)^{\frac{p}{q}}} \cdot \int_{0}^{x} t^{\alpha p} \cdot|f(t)|^{p} d t d x \\
& =\int_{0}^{\infty} \int_{t}^{\infty} \frac{x^{-\alpha p-1}}{(1-\alpha q)^{\frac{p}{q}}} \cdot t^{\alpha p} \cdot|f(t)|^{p} d x d t \\
& =\frac{1}{(1-\alpha q)^{\frac{p}{q}}} \int_{0}^{\infty} t^{\alpha p} \cdot|f(t)|^{p} \int_{t}^{\infty} x^{-\alpha p-1} d x d t \\
& =\frac{1}{(-\alpha q+1)^{p / q}} \cdot \frac{1}{\alpha p} \cdot \int_{0}^{\infty} t^{\alpha p} \cdot|f(t)|^{p} \cdot t^{-\alpha p} d t=\frac{1}{(-\alpha q+1)^{p / q}} \cdot \frac{1}{\alpha p} \cdot\|f\|_{p}^{p}
\end{aligned}
$$

We have thus shown that $\int_{0}^{\infty}|F(x)|^{p} d x<\infty$, so $F \in L^{p}((0, \infty))$.

