
MEASURE AND INTEGRATION – FINAL EXAM SOLUTIONS
Instructor: Daniel Valesin

1. (a) Let Ω be a set and E be a collection of subsets of Ω. Assume that we have sets
A0 ⊂ A ⊂ Ω such that A0 6= A and

for all B ∈ E , either A ⊂ B or A ∩B = ∅.

Prove that A0 /∈ σ(E), where σ(E) denotes the σ-algebra generated by E .

Solution. Let F = {B ⊂ Ω : A ⊂ B or A ∩ B = ∅}. Let us show that F is a
σ-algebra:

• We have Ω ∈ F since A ⊂ Ω.

• If B ∈ F , then either A ⊂ B, in which case A ∩ Bc = ∅, of A ∩ B = ∅, in
which case A ⊂ Bc; either way, we have Bc ∈ F .

• Finally, take B1, B2, . . . ∈ F and let us show that ∪Bn ∈ F . In case we have
A ∩ Bn = ∅ for every n, then A ∩ (∪Bn) = ∅, so ∪Bn ∈ F . In case we have
A ⊂ BN for some N , then we also have A ⊂ ∪Bn, so again ∪Bn ∈ F .

Now, by assumption we have E ⊂ F , so σ(E) ⊂ σ(F) = F , where the last inequality
holds because F is a σ-algebra. This means that every set B ∈ σ(E) satisfies the
property that defines F , that is, either A ∩ B = ∅ or A ⊂ B; in either case, we
must have B 6= A0.

(b) Let Ω be a set and µ? be an outer measure on Ω. Suppose A ⊂ Ω is µ?-measurable.
Show that, for any B ⊂ Ω with µ?(B) <∞, we have

µ?(A ∪B) = µ?(A) + µ?(B)− µ?(A ∩B).

Solution. Since A is µ?-measurable, we have

µ?(Z) = µ?(Z ∩A) + µ?(Z ∩Ac) ∀Z ⊂ Ω.

Applying this to Z = B and to Z = A ∪B respectively yields:

µ?(A ∪B) = µ?(A) + µ?(Ac ∩B);

µ?(B) = µ?(A ∩B) + µ?(Ac ∩B) =⇒ µ?(Ac ∩B) = µ?(B)− µ?(A ∩B);

note that in the implication in the second line we used the fact that µ?(A ∩ B) ≤
µ?(B) <∞. Putting these equalities together gives the desired result.

2. Let E ⊂ R be a Lebesgue measurable set (that is, E ∈ M). Prove that, if m(E) > 0,
then for every ε > 0 there exists an interval [a, b] such that m(E∩ [a, b]) > (1−ε) ·(b−a).

Solution. Suppose to the contrary that there exists ε > 0 such that, for every interval
[a, b], we have m(E ∩ [a, b]) ≤ (1− ε) · (b− a). Fix δ > 0 small enough that

(1− ε) · (m(E) + δ) < m(E).

By the definition of Lebesgue outer measure, there exist a sequence of intervals [an, bn],
n ∈ N, such that E ⊂ ∪[an, bn] and

m(E) ≤
∑
n

(bn − an) ≤ m(E) + δ.
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But then,

E ⊂ ∪[an, bn] =⇒ E ⊂ ∪([an, bn] ∩ E)

=⇒ m(E) ≤
∑
n

m([an, bn] ∩ E) ≤ (1− ε)
∑
n

(bn − an) ≤ (1− ε)(m(E) + δ) < m(E).

Hence it cannot be the case that m(E ∩ [a, b]) ≤ (1− ε) · (b− a) for every [a, b].

3. In both the following items, R is endowed with the Borel σ-algebra.

(a) Let (Ω,A) be a measurable space, and let An ∈ A, n ∈ N. Define f : Ω→ R̄ by

f(ω) = inf{n : ω ∈ Am for all m ≥ n}, ω ∈ Ω

(we adopt the convention that inf ∅ =∞). Prove that f is measurable.

Solution. For every x ∈ R̄, we have

{ω : f(ω) ≤ x} =
⋃

n∈N:n≤x
{ω : f(ω) ≤ n} =

⋃
n∈N:
n≤x

⋂
m∈N:
m≥n

Am ∈ A.

(b) Let f : R→ R be right continuous. Prove that f is measurable.

Solution. For each n ∈ N, define

fn =
∑
k∈Z

f((k + 1)2−n) · 1(k2−n,(k+1)2−n].

Since fn is a sum of indicator functions of measurable sets, it is measurable. We
will prove that fn → f pointwise; from this it will follow that f is measurable.
Fix x ∈ R and ε > 0. Since f is right continuous, there exists δ > 0 such that,
if y ∈ [x, x + δ], then |f(y) − f(x)| < ε. Now take n ∈ N with 2−n < δ. Let yn
be the smallest number of the form k2−n with k ∈ Z that is larger than x. Then,
fn(x) = f(yn), so |fn(x)− f(x)| = |f(yn)− f(x)| < ε since yn ∈ [x, x+ δ].

4. Let (Ω,A, µ) be a measure space.

(a) Let f : Ω → R̄ be an integrable function satisfying
∫
E f dµ ≥ 0 for all E ∈ A.

Prove that f ≥ 0 almost everywhere.

Solution. Assume to the contrary that µ({ω : f(ω) < 0}) > 0. Then, since

µ({ω : f(ω) < 0}) = lim
n→∞

µ({ω : f(ω) < −1/n}),

there must exist n such that µ({ω : f(ω) < −1/n}) > 0. But then,∫
{ω:f(ω)<−1/n}

f dµ ≤ − 1

n
· µ({ω : f(ω) < −1/n}) < 0.

(b) Let g : Ω→ R̄ be an integrable function. Prove that

lim
n→∞

n · µ({ω : g(ω) > n}) = 0.

2



Solution. First note that

∞ · µ({ω : |g(ω)| =∞}) =

∫
{ω:|g(ω)|=∞}

|g| dµ ≤
∫

Ω
|g| dµ <∞,

so we have µ({ω : |g(ω)| = ∞}) = 0. Next, let gn = g · 1{ω:g(ω)>n}. We have the
pointwise convergence gn →∞·1{ω:g(ω)=∞}, and this convergence is dominated by
g, which is integrable. Hence, using the Dominated Convergence Theorem,

n · µ({ω : g(ω) > n}) =

∫
n · 1{ω:g(ω)>n} dµ

≤
∫
gn dµ

n→∞−−−→∞ · µ({ω : g(ω) =∞}) = 0.

5. In this exercise, we consider the set Ω = (0,∞) with the Borel σ-algebra and Lebesgue
measure (these are just the restrictions to (0,∞) of the Borel σ-algebra and Lebesgue
measure of R).
Let p > 1 and let q be the conjugate exponent of p, that is, p + q = pq. Assume
f ∈ Lp((0,∞)).

(a) Show that, for every x > 0, f · 1(0,x) ∈ L1((0,∞)).

Solution. We have |f(t)| ≤ 1 + |f(t)|p for all t > 0, so∫ ∞
0
|f · 1(0,x)| dt =

∫ x

0
|f(t)| dt ≤

∫ x

0
(1 + |f(t)|p) dt ≤ x+

∫ ∞
0
|f(t)|p dt <∞.

(b) Prove that, for any α ∈ (0, 1/q) and x > 0,∣∣∣∣∫ x

0
f(t) dt

∣∣∣∣ ≤ x
1
q
−α

(1− αq)
1
q

(∫ x

0
tαp · |f(t)|p dt

) 1
p

.

Hint. Write f(t) = t−α · tα · f(t) and use Hölder’s inequality (make sure to verify
that the assumptions for the inequality are satisfied!)

Solution. Given x > 0, define

g(t) = t−α · 1(0,x)(t), h(t) = tα · f(t) · 1(0,x)(t),

so that
∫ x

0 f(t) dt =
∫∞

0 g(t) · h(t) dt. Note that∫ ∞
0
|g(t)|q dt =

∫ x

0
t−αq dt =

x1−αq

1− αq
<∞

since αq < 1, so g ∈ Lq((0,∞)). Also,∫ ∞
0
|h(t)|p dt =

∫ x

0
tαp · |f(t)|p dt ≤ xαp ·

∫ ∞
0
|f(t)|p dt <∞,

so h ∈ Lp((0,∞)). We can thus use Hölder’s inequality to obtain:∣∣∣∣∫ x

0
f(t) dt

∣∣∣∣ ≤ ∫ x

0
|f(t)| dt =

∫ ∞
0
|g(t)| · |h(t)| dt

≤
(∫ ∞

0
|g(t)|q dt

) 1
q

·
(∫ ∞

0
|h(t)|p dt

) 1
p

=
x

1
q
−α

(1− αq)
1
q

·
(∫ x

0
tαp · |f(t)|p dt

) 1
p

.
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(c) Define, for x > 0,

F (x) =
1

x

∫ x

0
f(t) dt.

Prove that F ∈ Lp((0,∞)). Hint. You will need part (b) and the Fubini-Tonelli
theorem. Use the fact that p− p

q = 1.

Solution. By part (b),

|F (x)|p =

∣∣∣∣1x ·
∫ x

0
f(t) dt

∣∣∣∣p ≤ x
p( 1

q
−α−1)

(1− αq)
p
q

·
∫ x

0
tαp · |f(t)|p dt

=
x−αp−1

(1− αq)
p
q

·
∫ x

0
tαp · |f(t)|p dt,

where the equality follows from p− p
q = 1. Now we have∫ ∞

0
|F (x)|p dx ≤

∫ ∞
0

x−αp−1

(1− αq)
p
q

·
∫ x

0
tαp · |f(t)|p dt dx.

Note that the function

(x, t) 7→ x−αp−1

(1− αq)
p
q

· tαp · |f(t)|p · 1{t≤x}

is non-negative and measurable with respect with the product Borel σ-algebra on
(0,∞) (since it is a product of measurable functions). Hence, by the Fubini-Tonelli
theorem,∫ ∞

0

x−αp−1

(1− αq)
p
q

·
∫ x

0
tαp · |f(t)|p dt dx

=

∫ ∞
0

∫ ∞
t

x−αp−1

(1− αq)
p
q

· tαp · |f(t)|p dx dt

=
1

(1− αq)
p
q

∫ ∞
0

tαp · |f(t)|p
∫ ∞
t

x−αp−1 dx dt

=
1

(−αq + 1)p/q
· 1

αp
·
∫ ∞

0
tαp · |f(t)|p · t−αpdt =

1

(−αq + 1)p/q
· 1

αp
· ‖f‖pp.

We have thus shown that
∫∞

0 |F (x)|p dx <∞, so F ∈ Lp((0,∞)).
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